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Summary. The ab initio SCF computation of second-order properties of large 
molecules (with 50 atoms or more) on workstation computers is demonstrated 
for static dipole polarizabilities and nuclear magneting shieldings. The mag- 
netic shieldings are calculated on the basis of gauge including atomic orbitals 
(GIAO). Algorithmic advances (semi-direct algorithms with efficient integral 
pre-screening, and use of a quadratically convergent functional for the polarizabil- 
ities) are presented together with an illustrative application to the fullerenes C60 
and C70. 
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1 Introduction 

The calculation of static dipole polarizabilities and nuclear magnetic shieldings at 
the self-consistent field (SCF) level of theory [1-3] has until recently [4-7] been 
restricted to relatively small molecules or small basis sets or powerful supercom- 
puters (see, for example, ref. [8-10]). Basis set requirements for accurate 
polarizabilities, however, cannot be neglected [11, 12], and the gauge invariance 
problem poses an additional obstacle to calculations of nuclear magnetic shifts 
[3, 4, 13-15]. 

This has to be compared to the enormous successes in the calculation of SCF 
equilibrium geometries: molecular geometries with 40-100 atoms are now rou- 
tinely optimized [ 16] with most calculations performed on workstation comput- 
ers. This advance has been possible with the introduction of "direct" and 
"semi-direct" methods [17-19] which avoid or reduce the amount of storage and 
input/output (I/O) of electron repulsion integrals (ERI) over contracted gaussian 
type basis functions ("atomic orbitals" AO). Recently "direct" and "semi-direct" 
methods have been extended to Moller-Plesset perturbation theory (MP2) 
[20-22], and to the calculation of SCF second-derivatives [22]. 

In this work we extend the "direct" and "semi-direct" techniques to the 
calculation of static dipole polarizabilities and nuclear magnetic shieldings. The 
efficiency of the methods is increased by AO-based coupled-perturbed Hartree- 
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Fock (CPHF) [23] with screening of near-zero ERIs, efficient utilization of point 
group symmetry, a n d -  in the case of polarizabilities- by a quadratically con- 
verging functional for the polarizability tensor. Magnetic shieldings are evaluated 
by a gauge invariant formalism using "gauge including basis functions" (GIAO) 
[3,4]. 

The two programs "POLLY" (for evaluation of static dipole polarizabilities) 
and "SHEILA" (magnetic shieldings) are fully compatible with the TURBO- 
MOLE package of programs [22]. It will be demonstrated how SCF second- 
order properties can be evaluated with the new programs on workstation 
computers, with adequate basis sets, and for large molecules. As illustrative 
applications we have chosen the carbon clusters C60 and C70. 

2 Basic theory 

The evaluation of closed-shell SCF second-order properties with respect to two 
perturbations ~ and t/ is a standard procedure [2, 3]. Application to large 
molecules, however, requires additional consideration. To make the present 
notation [24] transparent we briefly list the basic equations (an AO-based 
formulation [23] will be used throughout; more detailed presentations can be 
found in [23, 25]): 

Basis set expansion of (doubly occupied) molecular orbitals: 

Orthogonality: 

Closed-shell SCF equations: 

Fock matrix: 

Ii> =Z Iv>C~i (1) 
v 

C + S C  = 1 (2) 

F C  = S C e  (3) 

F = h + G[D] (4) 

Electron repulsion part of Fock matrix: 

Gv.[D] = ~ {(v*p I ~c'2) - ½(v*). [ x*#)}D~ (5) 
to2 

Density matrix: 

D = 2 C C  + (6) 

The usual orthogonality constraint for first-order molecular orbitals is [25] 

C + S C  ¢ 1 +S¢ C = - 5 C  (7) 

which leads to non-canonical perturbed orbitals. 
The variational constraint for the perturbed molecular orbitals is (CPHF 

equations): 

(h ¢ + G¢[D])C + G[D¢]C - S ¢ C e  + F C  ¢ - SC¢~ = SC~  ~ (8) 
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where e,. 5 is non-diagonal due to non-canonicity (Eq. (7)), and: 

= 2(C¢C + + CC~+), h ~ = ~ h, etc. (9) D e 

(note that h ~ is the derivative of the matrix representation of the one-electron 
operator, and not the matrix representation of the derivative of the one-electron 
operator). 

Differentiation of  the energy Lagrangian [25]: 

E = t r {ZC+hC + C+G[D]C - 2 ( C + S C  - 1)e} (10) 

with respect to the perturbations ~ and q yields: 

E ~  = tr{2C+ h ~ C  + C+ G~"[D]C - 2C+ S ~ C e  

+ 4C'l+hC ~ + 4C~+G[D]C ~ - 4C~+SC~e 

+ 4C+h~C ~ + 4C+G~[D]C ~ - 4C+S,Ce-e 

+ 4C+h~C ~ + 4C+G¢[D]C ~ - 4C+S*C~e 

+ 4c  + G[D q C }  (11) 

where use has been made of the SCF equations, and of both orthogonality 
constraints, Eqs. (2, 7), but without using the CPHF condition, Eq. (8). 

If  the CPHF condition for C* is substituted into Eq. (11) one obtains: 

Ee- , = t r{2C + h*~C + C + G~"[D]C - 2C + S ~ C e  + 4C + h"C ~ 
(12) 

+ 4C+G"[D]C ~ - 4C+S ,CCe  _ 2C+S,Ce~} .  

For dipole polarizabilities (4 and q are components of the electric field vector) 
the basis functions are chosen independent of the perturbation, and Eq. (11) is 
simplified considerably: 

E ~ = 4 t r {C~+hC~+ C ~ + G[D]C ~ -  C~+SC~e + C+h~C ~ 

+ C+h~C ~ + C+G[DV]C ~} (13) 

where the perturbed MOs (C ¢) are calculated from the simplified orthogonality 
constraint: 

C + S C  e- = 0, (14) 

and from the simplified CPHF equations: 

h~C + G [ D q C  + F C  ~ - SC~e = SCe ~. (15) 

If  the perturbation is a magnetic field, gauge including basis functions (GIAO) 
[3] have proven to be most satisfactory [4]. GIAO basis functions, however, have 
an explicit field dependence, and corresponding terms in Eqs. (7, 8, 11, 12) have 
to be included. 

With an external magnetic field there is yet another complication: since the 
first-order perturbation is purely imaginary [3], and since this is also true of the 
first-order perturbed basis functions v ~, it must be concluded from the linearity 
of both, CPHF equations and orthogonality constraint, that the first-order 
perturbed MO coefficients C e- must also be purely imaginary. All equations, 
however, are brought into real form if the imaginary unit is factored out and 
removed [3]. The matrices h ¢, G~[D], G[D~], D r, S ~, and e ~ then become 
skew-symmetric and real. We will, however, not make use of  this notation here, 
although our actual implementation of course avoids imaginary quantities. 
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3 Quadratically convergent second-order properties 

One of the more costly steps in the determination of second-order properties is 
the solution of the CPHF equations, Eqs. (7, 8). It constitutes the only time- 
consuming step, if the basis functions do not depend on the perturbation. 

Although the CPHF equations are linear in the unknown perturbed orbitals 
C ~ one has to resort to iterative algorithms in all but the smallest calculations. 

The update methods which are commonly used (direct inversion in the 
iterative subspace (DIIS) [26], and the conjugate gradient method [27]) have 
been shown to be equivalent for linear systems of equations [28]. 

Any further improvement of convergence characteristics in the CPHF proce- 
dure seems to be possible only by improving the approximate inverse. This 
approach has successfully been pursued in MO-based CPHF [22] but cannot 
easily be extended to AO-based CPHF. 

It is, however, possible to reduce the number of CPHF iterations simply by 
relaxing the convergence criterion for C ~. The desired second-order properties 
can still be evaluated at the same or at better accuracy, if the variational 
formula, Eq. (11), is used instead of Eq. (12). This has been recognized by 
several authors [25, 29, 30], and to our knowledge has only been tested by 
Helgaker et al. [30] in an MCSCF application. 

Here we present an error analysis for the property to be calculated in terms 
of the error in the approximate solutions C ~ of the CPHF equations. With the 
exact solution C: we can define the error in C e as: 

6C ¢ = C ~ -  C ~. (16) 

6C" is analogously defined. The approximate solutions ~e and C" may be 
required to obey the orthogonality constraint, Eq. (7), exactly, that is, 

C+ S aC ~ = O. (17) 

One then obtains from Eq. (11) (and exploiting Eq. (8) for the exact C ~, C~)" 

aE~ = E ~ ( ~ ,  ~ )  - E~(C~, C~) 

= 4 tr{aC~+h aC e + 6C.+G[D] aC ~ 

+ C+G[aD ~] (~C e - 6C~+S ac*~}, (18) 

that is 

I q l a c q  • Ilac.II (19) 

If, on the other hand, Eq. (12) is used for the calculation of E ~", then the error 
becomes 

6E e"=4t r{C+h ~6C e+C+G~[D]6C t - C + S  ~6C~-e-½C+S"C&~},  (20) 

where 

In this case 

&~ = C+ G[aDqC. (21) 

laE~"I "~ II 6C~ [[, (22) 

and the property error vanishes only linearly with the error in the CPHF 
solutions. 
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Fig, 1. Loglo of the relative error of the calculated polarizability exx (benzene) with respect to the 
converged result as a function of iteration index. Three algorithms have been tested. In the first 
algorithm ( + )  the perturbed orbitals are iterated after the usual decomposition of the SCF orbital 
rotation Hessian into (ea -ei)Sab, and an ERI part; the polarizability is calculated in each iteration 
from Eq. (12). In the second algorithm ( x ) the perturbed orbitals are iterated in the same way, 
but the polarizability is calculated from the variational formula, Eq. (11). The third set of points 
(O)  shows the further improvement of the second algorithm when DIIS is activated 

The linear vs. the quadratic convergence of E ~" is demonstrated in Fig. 1 for 
the calculation of the polarizability tensor component O~xx of benzene (the electric 
field is applied parallel to the molecular plane). The basis set used was a 
6-31G + sd + sp [12]. No other means of convergence acceleration was applied. 
If  an iterative subspace convergence acceleration [26] is used in addition to the 
quadratically convergent procedure, only 5 iterations suffice to obtain six signifi- 
cant digits of C~xx = 77.3418 a.u. 

The drawback of the quadratically convergent functional, Eq. (11), is that 
both CPHF solutions C ¢ and C '  have to be calculated. This is not a problem 
with polarizabilities or geometrical second derivatives, but it proves inconvenient 
in the calculation of nuclear magnetic shieldings. For this application we 
implemented the non-variational formula, Eq. (12). 

4 Semi-direct algorithm and pre-screening of near-zero integrals 

The techniques of ERI evaluation and processing which are used in the direct 
[I 7] or send-direct [ 19] SCF scheme can be applied to the AO-based solution of 
CPHF equations with only minor modifications. This is also true for the 
techniques of integral pre-screening [ 17, 19]. 

A batch (NM, KL) of integrals (v#]~c2) with v e N , # e M , ~ e K ,  2 e L  
(the upper case letters designate shell indices) will thus be calculated only if 
[191: 

max{4AD~cL, 4AD~vM, ADfcM, ADZLM, ADfcN, ADZN } * QNMQKL >~ 0, (23) 
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where 0 is a pre-screening threshold like 10 -1°. E characterizes the set of 
perturbations {E E which are dealt with at the same time (the three cartesian 
components of an external electric field for example). 

We use 

QNM = max (v*/~ I/~*v) 1/2 (24) 
" y e n  

and 

ADKL = max IAD£~l 
t, c e  K 
.a. e L  
g e e  

(25) 

in close analogy to [19]. 
The differential density matrices AD~. correspond to the error-controlled, 

optimized differential densities of the direct SCF procedure as introduced in Eq. 
(23) of ref. [19]. We note, however, that for CPHF calculations the minimization 
of differential (perturbed) densities comes as a by-product of the DIIS procedure 
if the update procedure is suitably chosen. This is well known, and as a 
consequence there is no need for an extra step where differential densities are 
minimized as described in [19]. 

For calculations of chemical shifts the Coulombic terms 4AD~wt and 4ADxc 
are omitted from Eq. (23). Magnetic shielding calculations for the applications 
presented later in this paper have been performed with ERI pre-screening in the 
CPHF step as outlined here. 

With magnetic shielding Calculations, of course, the CPHF step is not the 
only time-consuming operation. 

It is well known [3, 4] that the use of GIAOs in the calculation of magnetic 
shieldings leads to "perturbed electron repulsion integrals" like (v*# I ~c'2(~) ) 
which have as arguments three (unperturbed) basis functions (v, #, and x), and 
one "perturbed" basis function [3]: 

i 
,~(g~(r) = - ~ c  (_R~ x r_)e2(_r) 

(i )) 
exp ~c(_Ra x r) _B 2(_r) (26) 

B=_0 

2(~)(r) is the derivative of the field dependent GIAO [3] with respect to the 
external magnetic field B e e E = {Bx, By, B z } taken at _B = 0_. _R~ is the position 
of the center of basis function 2(£). The "perturbed integrals" (v*p ] to*2 (~)) are 
easily related to geometrical derivative integrals [25], and can be evaluated by a 
modified gradient integral package. 

Talking about pre-screening of "perturbed ERIs", our current implementa- 
tion of "SHEILA" only uses a simple test on the exponential factors of the 
"perturbed ERIs" in order to decide whether or not a batch of "perturbed 
ERIs" has to be evaluated and processed. This can, of course, be improved. 

5 Further improvements on integral pre-screening 

In this paragraph we present a detailed analysis on how errors due to integral 
pre-screening affect the calculated second-order properties, This analysis opens 
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the way to further improvements on integral pre-screening techniques. We start 
with the analysis of the variational formula, Eq. (11). Our considerations will be 
applicable to AO-based SCF geometrical second derivatives as well. We allow 
for errors in the perturbed ERIs, here represented by ~e,, ~_, ~, :  

6G¢~ = ~e~ _ Ge~ 

6G e = ~e  _ G e (27) 

6G ~ = G" - G n. 

We also allow for errors in the unperturbed ERIs in the CPHF step: 

6G[D ¢ l = G[D e] _ G[D ¢] 
(28) 

6G[D ~] = G[D "] - G[D"] 

while G[D] = F -  h is assumed to be exact. 
Since pre-screening of E RIs affects the CPHF step, Eq. (8), we obtain only 

approximate solutions C e, C ~, e.g. from: 

(h e + Ge[D])C + 5[/~¢]C - SeCe + FC e - SCee = SCg e (29) 

(for simplicity we assume this time that the approximate CPHF equations will be 
solved exactly, so that the errors aC e, 6C ~ are solely due to integral pre-screen- 
ing - or more generally - to integral approximation). 

From Eqs. (29, 8) it can be inferred, that: 

(aGe[D] + 6G[JD e] + G[6D¢])C + F a C e  - S 6C¢e = S C  be e. (30) 

From Eqs. (11, 8 and 30), and after some tedious algebra one obtains for the 
error in the second order property Ee": 

aE~, = E~,(5.  ~¢. G". ~e, .  d~. dr)  _ E¢,(G. G e, G". G e", C e, C ~) 

= 4 t r { 1 C  + 6Ge"[D]C + C + ~Ge[D]C ~ + C + 6G,[D]C e 

+ C + 5G[/~e]C, - C + 6Ge[D] (5C ~ - C + 6G[/~ e] 6C "} 

4 tr{¼C + 6G~"[D]C + C + 6Ge[D]C" + C + 6G"[D]C ¢ 

+ C + 6G[De]C ~} (31) 

where in the last expression higher-order errors have been neglected. This is a 
surprisingly simple result which has three implications for efficient integral 
pre-screening: 

(1) In the CPHF step (solving for ~e, Eq. (29)) it is tempting to evaluate a 
batch (NM,  KL)  of unperturbed ERIs (v# [ ~2) only if: 

H 3 H S H max {4A DKLDNM ' 4ADNMDKL ' z H AD KMD LN, AD LMD KN, 
U, H AD LND KM, AD KN D•M } * QNM QKL >1" O (32) 

where ,9 is the pre-screening threshold, and: 
H 

D N M  : max ]D~, [ (33) 
y E N  

,ue  M 
~?~ H 

(D~ would be a converged perturbed density which is usually not available). 
While this simple approach provides the correct answers when one starts with the 
almost converged solutions of the CPHF equations it may fail to converge 
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properly in realistic applications since there is an intricate interdependence 
between 6D and the integrals which are pre-screened, Eqs. (30, 32) so that higher 
order errors in Eq. (31) can become dominant in the course of iteration. Yet it 
is possible to save the two-densities enhanced pre-screening formula, Eq. (32), 
and in the appendix we show the necessary modifications, especially of Eq. (33), 
for a numerically stable CPHF procedure which we implemented in our dipole 
polarizabilities program. 

(2) In the calculation and processing of (first order) perturbed ERIs batches 
(NM, KL) z are evaluated only if: 

max{ 4D KL DHM, H H H H H 4D KL DNM, DKMD LN, D KMDLN, D KNDLM, DKND LM } 

* (QNMRfcL + QKLR~N) >~ O. (34) 

Here 

K E K  
, t e l  

in close analogy to ref. [32]. Wolinski et al. [4] advocated the use of the 
uncoupled approximation to D H if D r is not known at the time of the evaluation 
of (NM, KL) z. This approach will work well unless the eigenvalues of the SCF 
stability matrix [31] (also known as the SCF orbital rotation Hessian) become 
small. In this case results will probably become unsatisfactory due to correlation 
effects, too. It is to be noted that non-real instabilities may occur earlier than the 
usual singlet instabilities [31]. 

(3) The pre-screening of second derivative ERIs (which concerns G ~") has 
already been described in [32] for the case of SCF second derivatives. It is not 
relevant in the context of polarizabilities or chemical shifts. 

Next we analyze the proliferation of errors due to integral neglect when the 
non-variational formula, Eq. (12), is used. With the restriction to errors in the 
(first-order) perturbed integrals some of these considerations have been outlined 
before by Wolinski et al. [4]. 

The complete result is: 

~E ¢" = E~(G ¢~, G ¢, G '7, G, C ¢, ~ )  -- E~"(G ¢'7, G ~, G '7, G, C ¢, ~¢) 

= 4 tr(¼C + 6G¢'~[D]C + C+h '7 6C ¢ + C+G'7[D] 6C ¢ 

+ C + 6Gn[D]C¢- C+S n 6C¢e -½C+SnC 6e ¢) 

= 4 tr(¼C + 6G¢"C + C + 6G"[D]( ~ 

+ C + 6G¢[D]C '7 + C + c5G[/)¢1C ") (36) 

where the last expression is obtained after lengthy algebra from Eq. (30), and 
from the CPHF condition for C". 

This result is the same as in Eq. (31) as one may have suspected. 
Integral pre-screening in the "non-variational algorithm" (which uses Eq. 

(12)) thus employs the expressions introduced before, Eqs. (32-35). 

6 Molecular point group symmetry in second-order properties calculations 

Proper use of molecular point group symmetry can speed up calculations of 
second-order properties considerably. Algorithms for the use of symmetry in AO 
based CPHF have been described in [33] and [34]. 



SCF properties of large molecules: large carbon dusters 463 

Here we follow general considerations given in [35]. Focusing our attention 
on the two-electron matrices G¢[D] and G[D ¢] which are linear in the ERIs 
(first-order perturbed ERIs and unperturbed ERIs, respectively) we learn from 
the general symmetrization theorem in [35] that G¢[D] and G[D ¢] may be 
calculated from symmetry non-redundant integral batches only, provided the set 
of perturbations ~ e S defines a representation of the molecular point group. 
This representation will also be termed 6. 

If  symmetry redundant integral batches are omitted, and suitable symmetry 
factors are incorporated into the non-redundant ERIs during their "on-the- 
flight" evaluation, one obtains (after the usual ERI processing steps) the skeleton 
matrices [G~[D]] and [G[D~]] [33-36]. Here the outer square brackets indicate 
skeleton quantities which still need to be symmetrized [33-36]. The symmetriza- 
tion step is most easily performed after [G~[D]] and [G[D¢]] have been trans- 
formed into a basis of symmetrized atomic basis functions (SAOs) [35]. 

The symmetrization formula for the SAO skeleton matrix [G[D¢]] is [35] 

dim F dim F" 

{ ' e E  a = l  a ' = l  

[G[D*']]kr<lr,~, D e ® f o r "  (37) 

where ]krO denotes an SAO which transforms according to a column 7 of 
(matrix) representation F. The SAOs I kr~> and I lr'<> are constructed so that 
F, F" are irreducible and real [35]. <G[D~]> is the symmetrized matrix. 

pz®r®r" is the symmetrizing projector [35] which can also be used to 
symmetrize [G:[D]] in the same way. Since in our application ~ refers to a 
homogenous electric or magnetic field (dim S = 3) the matrices ps®r®r' do not 
exceed the dimension 2 7 . 2 7  for non-icosahedral molecular point groups 
(75 * 75 for icosahedral point groups), and are pre-calculated and stored for each 
pair F, F ' ,  with zero vectors (columns and rows) removed. The symmetrization, 
Eq. (37), then becomes negligible in terms of computation cost with icosahedral 
point groups as the only exception (a decomposition of psoror" as described in 
[35] would speed up the symmetrization for icosahedral point groups, but this 
has not been implemented). 

7 Basis set considerations 

The prediction of static dipole polarizabilities of larger molecules can be achieved 
with moderately sized basis sets if one set of polarizability optimized diffuse s- 
and d-functions (first or second row elements; hydrogen takes diffuse s- and 
p-functions) is added to an energy optimized basis set with at least two basis 
functions per valence orbital [ 12]. The errors in the isotropic polarizabilities are 
of the order of 10-15% [ 12]. Further basis set extension leads to only marginally 
improved polarizabilities at the SCF level. The diffuse s-functions may be 
omitted with little penalty in accuracy [ 12]. 

Basis set dependencies of magnetic shieldings as obtained by the GIAO 
formalism [3] have been discussed in [4]. It was observed [4] that elements of the 
first row (13C, 170, 19F) are well described by energy optimized TZP basis sets, 
i.e. basis sets containing three basis functions per valence orbital plus one set of 
polarization functions at each atom. For second row elements (like 33S) basis set 
requirements were found to be more stringent: one more set of polarization 
functions was required, and a partial decontraction of the outermost p-primitive 
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in the first p-contraction was necessary [4]; magnetic shieldings as obtained 
with these basis sets seem to be converged to within a few ppm of the SCF limit 
[4]. 

We confirm these results of Spackman [12] and Wolinski et al. [4], and 
emphasize the suitability of their basis sets for calculations of large molecules, 
with the exception of  basis sets with a large number of very diffuse functions 
which reduce numerical stability due to a badly conditioned overlap matrix, and 
which spoil program performance because few integrals containing diffuse func- 
tions can be neglected. 

8 Application to fullerenes 

Since their detection [37] and preparation in macroscopic quantities [38], fuller- 
enes like the soccerball shaped C60 and its elongated homologue C70 have 
attracted considerable interest both from experimental and theoretical chemists. 

Here we present calculations of SCF second-order properties for these 
molecules, since their large size and their high symmetry are well suited to test 
the efficiency of our algorithms. 

8.1 Polarizability of C60 

The static dipole polarizability of  C60 has to our knowledge not yet been 
determined experimentally. Two years ago, in pioneering work, Fowler et al. [8] 
for the first time calculated the polarizability of C60 at the SCF level with 
a 6-31G* basis set (900 basis functions). Their calculation took 10 days 
on a CRAY X-MP 48. They obtained a polarizability of ~ =442a .u .  
(1 a.u. = 1.6488 x 10 41 C2mZj-1) .  The calculation with our semi-direct pro- 
gram POLLY used an 6 - 3 1 G + s d  basis set [12] which also amounts to 900 
basis functions (counting 5d-functions per d-shell). The reference geometry of 
the icosahedral molecule is characterized by the bond lengths 1.446 & and 
1.406 A, and was obtained by a geometry optimization at the MP2 level of 
theory with a basis set of  DZP quality [39]. Bond lengths from gas-phase 
electron diffraction [40] are very similar (1.458 A, 1.401 A). Ab initio SCF 
calculations yield more pronounced differences in bond distances [41]. An 
X-ray structure inferred from a twinned crystal of  C60 seems to indicate severe 
distortions from icosahedral symmetry [42]. 

The calculation of the polarizability was performed on an IBM RISC/6000 
320H workstation with 64 MB main storage. It converged within 5 iterations to: 

C6o : C~xx = eyy = c~zz = 531.9 a.u. 

According to Spackman [12] this value should be accurate to within 10-15% 
and is probably too low. Comparison to the polarizability calculated in [8] 
demonstrates the importance of  diffuse basis functions. 

The wall-clock time elapsed was 1 day and 9 hours. Two-thirds of the time 
was spent in symmetrization steps due to symmetry group I h. No ERIs were 
stored on disc during the CPHF step. Note that the semi-direct programs DSCF 
[19, 22], POLLY, and SHEILA allow to store integrals according to a user- 
defined efficiency criterion [19], but this calculation has been done in fully direct 
mode. 
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8.2 Chemical shifts of C60 and C7o 

The 13C-NMR spectrum of C6o and C70 has been published in [43, 44]. For C6o 
it consists of a single line at 142.68 ppm, and for the nuclei a - e  in C70 (we use 
the same notation as in ref. [43]) the shifts are 150.07, 147.52, 146.82, 144.77 
and 130.28 ppm, respectively. 

Prior to these experimental findings Fowler et al. [8] had calculated the 
absolute magnetic shielding of carbon in C6o to be 98 ppm. They did not use 
gauge including basis functions (GIAO). Their result thus depends on the 
choice of origin (center of mass) even though they used an extrapolation 
technique meant to approach the basis set limit. Their largest calculation, 
however, employed a 6-31G* basis set: still far from the basis set limit. It does 
not come as a total surprise then that the absolute carbon shielding they 
calculated for C60 is off by 55 ppm from the experimental value of 43 ppm 
(which can be determined from the NMR shift and the absolute cabon shield- 
ing in benzene [45]). 

Later Fowler et al. [9] published shieldings with the gauge origin chosen at 
the nucleus of interest in C60 and obtained (after basis set extrapolation) a 
much improved absolute shielding of 46 ppm. 

Here we report the carbon shielding in C6o as calculated by the GIAO- 
CPHF formalism at the MP2/DZP equilibrium geometry [39]. We used the 
same DZP basis set also in the CPHF calculation. The obtained absolute 
carbon shielding was found to be: 

C60 : a = 44.5 ppm. 

This result is in excellent agreement with the result inferred experimentally, 
though probably somewhat fortuitously. 

The calculation took 1½ days on an IBM RISC/6000 550 workstation 
computer with 64 MB of main memory (200 MB of ERIs were written to disc). 

We also calculated the absolute carbon shieldings in C7o at the SCF/DZP 
level of theory. As reference geometry we used the SCF/dzP equilibrium geome- 
try [46] (here we adopt the notation introduced in [41, 46] that dz and DZ refers 
to (7s3p)/[4s2p] and (9s5p)/[4s2p], respectively). The calculation of the shield- 
ings took 2½ days on an IBM RISC/6000 550 workstation computer: 25 h for the 
one-electron part plus the first-order perturbed ERIs, and 34 h for the CPHF 
step, during which 1.2 GB disc storage were allocated for ERIs. C7o exhibits Dsh 
symmetry (20 symmetry operations) and one would thus expect at least a factor 
6 increase in computation time when going from C6o (symmetry group It, = 120 
symmetry operations) to C70. It is the CPHF step which takes about equal 
computation time for both molecules (30 h for C6o and 34 h for C7o). The reason 
is the symmetrization step, Eq. (37), which currently is inefficiently implemented 
for icosahedral point groups: a decomposition of the symmetrizing projector 
p~®r®r" as proposed in [35] (with construction of non-redundant matrix 
elements equivalent to irreducible tensor elements) would alleviate this problem. 
Since icosahedral point groups are of limited importance in chemistry (with few, 
but notable exceptions) we decided not to undertake the extra effort to write a 
symmetry code optimal for icosahedral point groups. 

The calculated carbon shieldings for C7o are tabulated in Table 1 and 
compared to the experimental absolute shieldings calculated from the known 
carbon shielding in benzene of 57.2 ppm [45], and the measured 13C-NMR shifts 
in benzene solution [43]. 
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Table 1. Experimental [43] and calculated 13C-NMR shifts (downfield with respect to benzene), and 
absolute carbon shieldings in C6o, C7o, and benzene 

Mol. Nucleus Shift rel. to C6H 6 Absolute shielding 
(exp) (calc) (exp) (calc) 

C6o 
C7o 

C6H6 

14.2 20.8 43.0 44.5 

21.6 24.2 35.6 41.1 
18.3 21.1 38.9 44.2 
19.0 19.8 38.2 45.5 
16.3 17.8 40.9 47.5 

1.8 7.9 55.4 57.4 

0 0 57.2 [45] 65.3 

The discrepancies between calculated and measured shieldings are larger 
than for C6o but are still in the expected range of error of 7 ppm. The relative 
sequence of shifts in C70 is in very good agreement with experiment except for 
nuclei b and c which are only 0.7 ppm apart in the experimental spectrum. 
Some probable sources of errors are: 

(1) Basis set deficiency: for benzene the calculated carbon shielding is 65.3 ppm 
with the DZP basis set while the basis set limit of the carbon shielding is 
probably close to [4] or below [47] the experimental value 57.2 ppm. The error 
in the carbon shielding due to the DZP basis set thus amounts to about 10 ppm 
in benzene. The error is smaller in most other molecules, and is already much 
improved if a basis set of TZP quality is employed (especially with regard to 
relative shifts). 

(2) Effects of electron correlation. 

(3) The choice of the reference geometry: the SCF equilibrium geometry of C70 
probably suffers from the same short-comings (too much bond alternation) as 
the SCF equilibrium geometry of C60 [39]. It may be suspected that for the 
correct equilibrium geometry the ordering of all calculated carbon shieldings is 
the same as in the experiment. 

(4) Solvent effects. 

9 Conclusions 

The semi-direct calculation of second-order SCF properties (polarizability and 
magnetic shielding) on workstation computers has been demonstrated for the 
fullerenes C6o and C70. The magnetic shielding calculation for C7o (1050 
basis functions, D5h symmetry) is unprecedented in size. This calculation ran 
for 2½ days on a dedicated IBM RISC/6000 550 workstation: this is to be 
considered a routine application. The accuracy of the calculated carbon 
shieldings was about 7 ppm (absolute error). The relative sequence of chemical 
shifts in C70 is reproduced within a smaller error margin (Table 1). Application 
with up to 900 basis functions to less symmetrical molecules can be found in 
[481. 
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The GIAO-CPHF method is an invaluable tool for the identification of 
substances from the NMR spectrum alone: in a first step the structure guess 
is refined by geometry optimization at the SCF level of theory (or, if possible, 
at the MP2 level of theory), and in a second step the magnetic shieldings 
are evaluated and compared to the experimental spectrum. While this ap- 
proach has been available earlier [4, 5] we extended its applicability to large 
systems like fullerenes where in the absence of empirical rules the ab initio 
calculation of chemical shieldings may allow quick confirmation of structure 
proposals. 

Where are the limitations of the method? Chemical shifts can be evaluated at 
the same price as an SCF plus a gradient calculation. On current workstation 
computers this allows applications to molecules with ,~ 100 atoms if about 8 or 
more symmetry operations aid the calculations. At this molecular size 64 MB of 
main storage have to be available for computational efficiency. 

A rigid molecular equilibrium geometry is a necessary prerequisite. Floppy 
molecules may provide future challenges. 

Since the GIAO-CPHF method is based on the SCF method its results 
become poor when electron correlation becomes important, and it would be 
desirable to be able to calculate chemical shifts also at the GIAO-MP2 level of 
theory. Fortunately such an approach has recently been implemented, and 
GIAO-MP2 calculations for small molecules have become possible [49]. First 
results from the GIAO-MP2 method [49] indicate strong correlation contribu- 
tions to 170 chemical shifts in terminal oxygen groups. Other methods for 
magnetic shielding calculations at the correlated level have also been suggested 
and implemented - like MCSCF-IGLO [50] - and present a valuable alternative 
to GIAO-MP2. 

The ab initio calculation of static dipole polarizabilities of large molecules 
on workstation computers is another advance presented in this work. The 
(semi-)direct CPHF calculation usually takes less time than a (semi-)direct 
SCF calculation with the same basis set. The calculated static polarizabilities are 
electronic polarizabilities only: the relaxation of the equilibrium geometry has to 
be accounted for when less rigid molecular systems are treated [51]. 

The technical advances in this work may be summarized as follows: 

(1) A semi-direct implementation of the CPHF algorithms for static dipole 
polarizabilities and nuclear magnetic shieldings (based on GIAOs) has been 
introduced for the first time. 

(2) A quadratically converging functional has been used for the polarizabilities 
to speed up convergence. 

(3) A two-densities integral neglect criterion, Eq. (32) (with details given in the 
appendix), has been introduced for enhanced integral pre-screening in the 
semi-direct CPHF calculations. 

Note added in proof 

13C-NMR shieldings (in ppm) for a ( 9 s 5 p l d ) / [ 5 s 3 p l d ]  TZP basis set are: 39.4 in C6o , 35.5, 38.8, 
39.2, 41.7, 59.9 in C7o, and 58.4 in benzene, a marked improvement over DZP results. 

POLLY now allows the calculation of static hyperpolarizabilities /~ and, by further numerical 
differentiation, 7- The 6-31G + sd basis set result for C6o is: 

. . . .  = -c~4E/c~F 4 = 9 . 0 .  104 a.u., ])xxyy = 3.0. 104 a.u. 
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Appendix 

We outline an algorithm for pre-screening of (unperturbed) ERIs during the 
iterative solution of the CPHF equations as implemented in our program POLLY 
for the calculation of static dipole polarizabilities. 

The aim is to reach a pre-set accuracy in the components of the polarizability 
tensor as efficiently as possible. This goal is achieved by the pre-screening formula, 
Eq. (32) (with H = ~ in our case), if we choose 

P 

D3K(L p)-= ~ max IAD~?) I (38) 
q 0 ~ e e  

K ~ K  
) , e L  

where p, q are iteration indices. AD e(°) is the perturbed density obtained from 
solving the uncoupled perturbed Har t r ee -Fock  equations, and AD e(q), q > 0, is a 
differential perturbed density obtained from the residuum of the DIIS-optimized 
perturbed density D e(q) of the previous iteration ( De(q)=~,=oq-~ w, ADd(r); 
14) 1 . . . Wq 1 are determined from Ee~(D ~(q)) = min! using the variational formula, 
Eq. (13)). 

The accurate evaluation of the polarizabiliti~ in the iterative subspace will be 
guaranteed, if the necessary matrix traces tr G[AD ~(p)] AD n(a) are consistently 
carried out in the orderp >~ q (the error in the iterative subspace polarizabilities will 
scale with O times a power of the number N of the basis functions (ON 2 for statistical 
cancellation of small errors) provided that the DIIS coefficients remain bound). 

Correct over-all convergence of the polarizability is assured (with the possible 
exception of a badly conditioned SCF stability matrix) since the extension of the 
iterative subspace by a slightly erroneous update AD ~ ( P )  (where the error hAD ~(P) is 
due to g)G[D e(p- 1)]) affects the polarizability calculated in the extended iterative 
subspace only in second order of 0 if AD ~(p) -~ O. 

This pre-screening algorithm has proven to be numerically stable: The 
6-31G + sd basis [12] used for the calculation of the static dipole polarizability of 
C60 contains diffuse s-functions with orbital exponent ~s = 0.042, and d-functions 
with ~d = 0.175; the lowest eigenvalue of the overlap matrix is 5 x 10 -7 (the largest 
eigenvalue is 20). Despite the badly conditioned overlap matrix the polarizability 
can be calculated in 5 iterations to 4 (numerically) significant digits with the integral 
neglect threshold set to 0 = 3 x 10 8. 

This pre-screening algorithm can be extended to mixed second-order properties 
like magnetic shieldings where only one set of CPHF equations is solved (e.g. with 
respect to the external magnetic field): D H in Eq. (33) has to be replaced by 
max(D n, D e) with D e as defined in Eq. (38), and with D ~/obtained from Eq. (33) 
using the uncoupled perturbed Har t r ee -Fock  approximation for D ", 11 e H (e.g. 
the perturbations originating from the nuclear magnetic moments). 
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